

General Description

TRinno IGBT power module provides low conduction and switching losses as well as short circuit ruggedness. It is designed for applications such as Motor Driver, IH, Rectifier and Welder.

Features

- 1200V Field Stop Trench IGBT Technology
- Fast & Soft Recovery Diodes
- Positive Temperature Coefficient
- Short Circuit Withstanding Time : 10µs

Applications

Motor driver, IH(Induction heating), Rectifier, Welder

Absolute Maximum Ratings

Parameter		Symbol	Value	Unit
Collector-Emitter Voltage		V _{CES}	1200	V
Gate-Emitter Voltage		V _{GES}	±20	V
Continuous Collector Current	T _C = 25 ℃	- I _c -	150	Α
	T _C = 100 °C		75	A
Pulsed Collector Current (Note 1)		I _{CM}	150	A
Diode Continuous Forward Current	T _c = 100 °C	I _F	75	A
Power Dissipation	T _C = 25 ℃	_	TBD	W
	T _C = 100 ℃	P _D	TBD	W
Operating Junction Temperature		T _{vj}	-40 ~ 150	°C
Storage Temperature Range		T _{STG}	-40 ~ 150	°C

Notes :

(1) Repetitive rating : Pulse width limited by maximum junction temperature

Thermal Characteristics

Parameter	Symbol	Value	Unit	
Maximum Thermal resistance, Junction-to-Case (Per IGBT)	R _{øjc} (IGBT)	TBD	K/W	
Maximum Thermal resistance, Junction-to-Case (Per DIODE)	R _{øjc} (DIODE)	TBD	K/W	

Electrical Characteristics of the IGBT $T_{vj}{=}25^\circ\!C,$ unless otherwise noted

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
OFF		·]		1		I
Collector – Emitter Breakdown Voltage	BV _{CES}	$V_{GE} = 0V, I_C = 1mA$	1200			V
Zero Gate Voltage Collector Current	I _{CES}	V _{CE} = 1200V, V _{GE} = 0V			1	mA
Gate – Emitter Leakage Current	I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			± 100	nA
ON						
Gate – Emitter Threshold Voltage	V _{GE(TH)}	$V_{GE} = V_{CE}, I_C = 75 \text{mA}$	5.0		8.5	V
		V _{GE} = 15V, I _C = 75A, T _{vj} = 25 ℃		2.0	2.5	V
Collector – Emitter Saturation Voltage	V _{CE(SAT)}	V _{GE} = 15V, I _C = 75A, T _{vj} = 125 ℃		2.3	2.8	V
DYNAMIC						
Input Capacitance	CIES	V _{CE} = 25V,		TBD		nF
Output Capacitance	C _{OES}	$V_{GE} = 0V$		TBD		pF
Reverse Transfer Capacitance	C _{RES}	f = 1MHz		TDB		pF
SWITCHING	•				•	
Turn-On Delay Time	t _{d(on)}	$V_{CC} = 600V, I_C = 75A$ $R_G = 10\Omega, V_{GE} = \pm 15V$ Inductive Load, $T_{vj} = 25 \degree C$		TBD		ns
Rise Time	tr			TBD		ns
Turn-Off Delay Time	t _{d(off)}			TBD		ns
Fall Time	t _r			TBD		ns
Turn-On Switching Loss	E _{ON}			10.4		mJ
Turn-Off Switching Loss	E _{OFF}			2.9		mJ
Total Switching Loss	E _{TS}			13.3		mJ
Turn-On Delay Time	t _{d(on)}			TBD		ns
Rise Time	t _r			TBD		ns
Turn-Off Delay Time	t _{d(off)}	V _{CC} = 600V, I _C = 75A		TBD		ns
Fall Time	t _f	$R_{G} = 10\Omega, V_{GE} = \pm 15V$ Inductive Load, $T_{vj} = 125 \degree$ C		TBD		ns
Turn-On Switching Loss	E _{ON}			TBD		mJ
Turn-Off Switching Loss	E _{OFF}			TBD		mJ
Total Switching Loss	Ε _{τs}			TBD		mJ
Total Gate Charge	Qg			TBD		nC
Gate-Emitter Charge	Q _{ge}	$V_{CC} = 600V, I_{C} = 75A$ $V_{GF} = 15V$		TBD		nC
Gate-Collector Charge	Q _{gc}	VGE - 10V		TBD		nC
Short Circuit Withstanding Time	t _{SC}	V _{CC} = 600V, V _{GE} = 15V, T _{vj} = 125 ℃	10			μs

Electrical Characteristics of the DIODE T_{vi}=25°C, unless otherwise noted

Parameter	Symbol	Test condition		Min.	Тур.	Max.	Unit
Diode Forward Voltage	V _{FM}	I _F = 75A	T _{vj} = 25 ℃		2.3	2.8	- V
			T _{vj} = 125 ℃		TBD	TBD	
Reverse Recovery Current	Irr	$V_{CC} = 600V, I_F = 75A$ $R_G = 10\Omega, V_{GE} = \pm 15V$ Inductive Load	T _{vj} = 25 ℃		TBD		- A
			T _{vj} = 125 ℃	/	TBD		
Reverse Recovery Charge	Q _{rr}		T _{vj} = 25 ℃		2.9	<	μC
			T _{vj} = 125 ℃		TBD		
Reverse Recovery Time	t _{rr}		T _{vj} = 25 ℃		TBD		ns
			T _{vj} = 125 ℃	🔿	TBD		

Characteristics of the Module

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Uni
Isolation Voltage	V _{ISO}	RMS, f=50Hz, t=1 minutes		2.5		kV
Terminal mounting torque (M5)			2.5		5.0	N.m
Weight				155		g
Ptell.						

Package Outline (Dimension in mm)

Disclaimer

TRinno technology reserves the right to make changes without notice to products herein to improve reliability, performance, or design. The information given in this document is believed to be accurate and reliable. However, it shall in no event be regarded as a guarantee of conditions and characteristics. With respect to any information regarding the application of the device, TRinno technology hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of patent rights of any third party.